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The two components of the force acting on a clean almost spherical bubble rising
near a plane vertical wall in a quiescent liquid are determined experimentally. This
is achieved by using an apparatus in which a CCD camera and a microscope follow
the rising bubble. This apparatus allows us to measure accurately the bubble radius,
rise speed and distance between the bubble and the wall. Thereby the drag and lift
components of the hydrodynamic force are determined for Reynolds numbers Re
(based on bubble diameter, rise velocity U, and kinematic viscosity ν) less than 40.
The results show the existence of two different regimes, according to the value of
the dimensionless separation L∗ defined as the ratio between the distance from the
bubble centre to the wall and the viscous length scale ν/U. When L∗ is O(1) or more,
experimental results corresponding to Reynolds numbers up to unity are found to be
in good agreement with an analytical solution obtained in the Oseen approximation
by adapting the calculation of Vasseur & Cox (1977) to the case of an inviscid bubble.
When L∗ is o(1), higher-order effects not taken into account in previous analytical
investigations become important and measurements show that the deformation of the
bubble is significant when the viscosity of the surrounding liquid is large enough. In
this regime, experimental results for the drag force and shape of the bubble are found
to agree well with recent theoretical predictions obtained by Magnaudet, Takagi &
Legendre (2002) but the measured lift force tends to exceed the prediction as the
separation decreases.

1. Introduction
Understanding interactions between bubbles and solid walls is of importance for

predicting how bubbly flow characteristics, such as void fraction and statistical
distribution of bubble sizes, are affected by the presence of solid boundaries. When
the bubble volume fraction becomes of O(10−2), bubbles start to affect significantly
the flow by providing a significant source of momentum and modifying the density
of the bubbly mixture in an inhomogeneous fashion. Then the near-wall velocity
distribution and the stability of the boundary layer become affected by the presence
of the dispersed phase. Therefore, determining the forces acting on bubbles rising
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near a wall is important for designing and predicting the efficiency of many processes
involving bubbly flows. In the present work we focus on this question by considering
the canonical case of a single bubble rising near a vertical wall in a quiescent liquid.
We limit our investigation to the range of low-to-moderate particle Reynolds numbers
where bubbles rising in common liquids are almost spherical.

Provided the distance L between the particle centre and the wall is much larger than
the particle radius R, the drag force acting on a spherical particle moving parallel to a
fixed infinite plane wall can be obtained analytically under Stokes approximation using
the technique of reflections (Happel & Brenner 1973, pp. 58–95). In the opposite limit
L ≈ R, the lubrication approximation can be employed to evaluate the leading-order
contribution to the drag (Goldman, Cox & Brenner 1967). The connection between
these two approaches has been carefully studied using matched asymptotic expansions
by Goldman et al. (1967) and O’Neill & Stewartson (1967). Nevertheless, the Stokes
approximation does not provide a complete picture of wall–particle interactions since
a spherical particle cannot experience any lift force in the Stokes regime (Bretherton
1962). Therefore, evaluating the migration or lift force acting on a non-deformable
particle rising or falling parallel to a plane wall or to the streamlines of a pure shear
flow in the low-Reynolds-number regime requires small inertia effects to be taken
into account. Based on this idea and on the use of matched asymptotic expansions,
Saffman (1965) obtained the lift force acting on a spherical particle migrating in a
simple unbounded shear flow in the limit where advective effects due to the shear
are much stronger than those due to the relative velocity between the particle and
the fluid. Saffman’s expression for the lift force was later extended by McLaughlin
(1991) to the case where advection by the relative velocity is not negligible, and it
was generalized to drops of arbitrary viscosity by Legendre & Magnaudet (1997) (see
Stone 2000 for a review of further developments of Saffman’s 1965 theory).

A large amount of work has been devoted to the analytical determination of
hydrodynamic forces acting on a solid spherical particle moving parallel to a plane
wall in the low-but-finite Reynolds number regime. Most of the studies made use of
the technique of matched asymptotic expansions and estimated the two components
of the force at first order in terms of the particle Reynolds number. Vasseur & Cox
(1976) and Cox & Hsu (1977) considered the case where the wall lies in the inner
(Stokes) region of the particle-induced flow, whereas Vasseur & Cox (1997) treated
the situation where the wall lies in the outer (Oseen) region. The case of Couette
and Poiseuille flows in which the inertial migration results from the interaction of the
two walls with a uniform or non-uniform shear was first considered by Ho & Leal
(1974). Since then, it has been the subject of several investigations, as well as the
case where the particle moves in a simple shear flow in the presence of a single wall.
The corresponding contributions differ by the various assumptions on which they
are based, especially whether the particle is regarded as neutrally or non-neutrally
buoyant and whether the wall lies in the Stokes or the Oseen region of the flow
disturbance. A comprehensive review of these contributions and of their range of
validity is given by Hogg (1994).

While there can be no lift force on a spherical bubble or drop moving in the Stokes
flow regime, such a force may appear in the absence of inertia if the drop deforms
due to the local viscous stress. In this case, the crucial parameter to be considered
is the capillary number Ca expressing the ratio of the characteristic viscous stress
to the capillary pressure. If the bubble rises near a wall, the flow field around it
results from the superposition of the field corresponding to an unbounded fluid and
that produced by the mirror image of the bubble with respect to the wall. The latter
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contribution includes a finite strain which induces the deformation of the bubble
for finite values of Ca, resulting in a non-zero transverse force. Numerous analytical
studies concerning the deformation of a fluid sphere in a shear flow have been carried
out under the Stokes approximation; early results are reviewed by Leal (1980). One of
the most noticeable contributions including wall effects is that of Chan & Leal (1979)
who determined the deformation of a neutrally buoyant drop of arbitrary viscosity
moving in a Couette flow or in a plane Poiseuille flow of a non-Newtonian fluid.
They compared their analytical predictions for the transverse migration speed and
the equilibrium position of the drop in the flow with experimental results obtained
by Karnis & Mason (1967); later they performed new experiments (Chan & Leal
1981) that confirmed, at least qualitatively, their predictions. Shapira & Haber (1988,
1990) determined the drag force and the deformation of a drop moving in a quiescent
liquid and in a plane Couette flow, respectively. Uijttewaal, Nijhof & Heethaar (1993)
and Uijttewaal & Nijhof (1995) used a boundary integral technique to obtain the
deformation and the migration speed of a drop moving in a simple shear flow near a
wall. Some of their results showed good agreement with available predictions whereas
others, especially those related to transverse migration, revealed significant differences
with available theories as well as with experiments performed by Smart & Leighton
(1991) in a rotating Couette flow.

Few detailed experiments devoted to the near-wall motion of solid or fluid particles
in a quiescent fluid have been reported. According to the review in Clift, Grace
& Weber (1978), most of the early investigations considered the case of solid or
fluid particles moving along the axis of a vertical cylinder; there the wall-induced
correction to the particle velocity was expressed as a function of the ratio of the
particle diameter to the tube diameter. A detailed study of the influence of a wall
on the drag of a small solid sphere was performed by Ambari, Gauthier-Manuel &
Guyon (1983). They maintained a falling sphere at a constant distance from a vertical
wall by using a magnetic levitation technique and determined the evolution of the
drag force vs. the distance to the wall in the low-Reynolds-number regime. Their
results showed a good agreement with Faxén’s expression (see Happel & Brenner
1973, pp. 326–327) for dimensionless gaps ranging from 10−2 to O(1). A pioneering
experiment was performed by Vasseur & Cox (1977) in order to determine the lateral
migration of small solid particles falling between two parallel walls. Using optical
techniques, they found good agreement with their theory in the case where the wall
is located in the Oseen region of the flow disturbance.

This brief review suggests that most of the available experimental information
about wall-induced effects concern either solid particles or drops moving in Couette
and Poiseuille flows. In particular it seems that no precise determination of the lateral
migration of drops and bubbles moving in a quiescent liquid has been carried out.
Moreover, no systematic investigation of wall-induced effects has been reported in
the range of intermediate Reynolds numbers where inertial effects are dominant
while bubbles still maintain an almost spherical shape. The purpose of the present
contribution is to fill part of this gap by using appropriate optical techniques and
comparing experimental results for the drag and lift components of the force with
analytical predictions.

2. Experimental apparatus and procedure
Figure 1 shows a diagram of the experimental facility used to measure the evol-

ution of the bubble radius R, rise velocity U, wall-normal velocity W , and distance
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Figure 1. Sketch of the experimental device.

between the bubble centre and the wall L. Single bubbles are generated by a bubble
generator connected to an air tank; the reader is referred to Takemura & Yabe (1999)
for a precise description of this generator. The pressure inside the air tank is kept
around 0.5 kPa higher than that within the liquid contained at the bottom of the test
section. The test section is a 500 mm long glass channel with a square cross-section of
50× 50 mm2. The vertical wall is a stainless steel plate 300 mm long and 40 mm wide
inserted in the middle of the cross-section (the possible influence of the outer wall of
the device will be addressed during the discussion of the results). The vertical plate
is connected to a horizontal (z) displacement system with a travelling distance of
±20 mm; this system is used to adjust the distance between the bubble and the wall.
The plate is suspended from the horizontal displacement system which rests on the top
of the test section. The leading edge of the plate is located 200 mm above the bottom of
the test section in order to avoid disturbances just after bubble generation. The heart
of the measuring system consists of an optical device developed by Takemura & Yabe
(1998, 1999). This device is fixed on the vertical x-displacement system; it combines a
CCD camera with a microscope in order to measure accurately the radius of the bub-
ble. Using this apparatus, Takemura & Yabe (1998) were able to obtain the drag force
on a rising bubble with an accuracy better than 5%. The CCD camera has 640× 480
pixels which, according to the calibration used in the present study, yields a resolution
of about 6.4 µm per pixel. The depth of field of the microscope is about 150 µm.

To track the rising bubble, we adjust the speed of the camera as follows. A picture
of the bubble is recorded on the personal computer via the video capture board at a
rate of 30 frames per second. A binary image is made and the position of the bubble
is determined. Then we calculate the relative speed of the bubble and the camera from
consecutive frames and we use this relative speed to adjust the speed of the vertical
displacement system. To determine the effect of the wall on the bubble motion, it is
crucial to set the plate vertically. To ensure verticality, we proceed as follows. We first
generate a bubble in the absence of the plate and let the camera follow it. Then we
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K2 K5 K10 K20 K50 K100

ρ(kg m−3) 868 906 931 947 953 962
µ(kg m−1 s−1 × 103) 1.99 4.44 9.32 18.9 44.7 94.0
ν(m2 s−1 × 106) 2.3 4.9 10.0 20.0 46.9 99.5
σ(kg s−2 × 103) 18.3 19.7 20.1 20.8 20.8 20.9

Table 1. Physical properties of the silicone oils used in the experiments.

adjust the angle of the vertical displacement system in such a way that the camera
captures the bubble along all its path within ±25 µm in the horizontal direction.
Finally we insert the plate in the test section and adjust its angle so that it is always
located at the same position in the image, whatever the vertical distance from the
leading edge.

All the experiments are carried out at room temperature and atmospheric pressure
using silicone oil (dimethyl siloxane polymer; Shinetsu Chemical Co., KF-96) as the
carrying liquid. To cover a sufficiently wide range of Re (Re = 2RU/ν, where ν is the
kinematic viscosity), we employ six different qualities of silicone oil with kinematic
viscosities ranging from about 2.0× 10−6 to 1.0× 10−4 m2 s−1. The physical properties
of these oils are detailed in table 1; hereinafter these various oils are referred to as
K2 to K100, according to the denomination specified in table 1. Variations of oil
viscosity with temperature are determined using a rotating Couette viscometer and
corresponding corrections are taken into account in the analysis of the data. The
temperature of the device is determined before and after each set of experiments in
order to ensure that no significant temperature variation has occurred. An important
property of silicone oil is its non-polar nature. Because of this, no indication of
surface contamination has been detected in our experiments. In particular, the values
of the drag force acting on bubbles rising far from the wall always agree with
values corresponding to clean bubbles with a surface subject to a shear-free boundary
condition (see below).

Using the device and the adjustments described above, the bubble radius, rise
speed and distance between the bubble and the wall are measured from the recorded
pictures and the time history of the camera speed. The radius and the distance L to
the wall are evaluated on each frame while the local speed of the bubble is obtained
by locating the centre of the bubble on each frame, calculating the relative speed
from the movement of the centre in two consecutive frames, and adding the speed
of the camera corresponding to these two frames. We fit the time history of L with
polynomial functions of time up to fourth order and calculate the time rate of change
of this fitting function in order to estimate the migration speed W in the direction
perpendicular to the wall. The correlation is better than 0.995 for each curve and the
maximum deviation between the fitted and experimental values is less than 2%.

Determining L precisely in cases where the bubble is not perfectly spherical requires
the position of the bubble centroid to be properly defined. For this purpose, we
choose an initial approximation of the centroid location (defined as r = 0), express
the bubble contour as r = g(θ), and perform a Fourier decomposition of this contour
(see figure 13). In such a decomposition, terms in cos θ and sin θ are associated with a
translational mode and become zero if the origin r = 0 coincides with the geometrical
centroid. We apply this condition iteratively to reduce the strength of the translational
mode and obtain the position of the centroid at convergence.
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Wall surface
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(a) (b) (c)
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24 s 1.6 s 1.6 s
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6 s 0.4 s 0.5 s

0 s 0 s 0 s

Figure 2. Photographs showing typical bubble trajectories near the wall. (a) K100: R = 0.513 mm,
U∞ = 8.6 mm s−1, Re = 0.09; (b) K10: R = 0.378 mm, U∞ = 39.0 mm s−1, Re = 3.0; (c) K2:
R = 0.365 mm, U∞ = 100.1 mm s−1, Re = 32.0.
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Figure 3. Two examples of slightly deformed bubbles rising near the wall.
(a) L/R = 1.50, ε = 0.017; (b) L/R = 2.57, ε = 0.0056.

Figure 2 shows typical CCD camera photographs of bubbles rising near the plate
taken in the K100, K10 and K2 silicone oils, respectively. The corresponding values
of R, U∞ (the rising speed far from the wall) and Re are given in the caption. Note
that for K10 and K2 the total time from bottom to top is 2 s, whereas it is 30 s for
the most viscous oil (K100). In all cases, the bubble migrates away from the wall
and the migration speed decreases as the distance L to the wall increases. In K2
and K10 the bubble keeps an almost spherical shape and the deformation due to
the wall is very small. In contrast, detailed observation of the bubble shape reveals
that the deformation of bubbles rising in K100 may be significant. Figure 3 shows
two typical photographs taken in this situation. The bubble radius is R = 0.740 mm,
the rise velocity far from the wall is U∞ = 17.2 mm s−1 and the resulting value of
the Reynolds number Re∞ = 2RU∞/ν is 0.25. Case (a) corresponds to L = 1.11 mm
and U = 13.3 mm s−1, while case (b) corresponds to slightly larger values, namely
L = 1.90 mm and U = 15.0 mm s−1. It can be seen that both bubbles deform and
there is no doubt that the shear induced around the bubble by the non-slip condition
at the wall is responsible for this effect. In both cases one can observe that the bubble
is lengthened (resp. shortened) along an axis inclined at +45◦ (resp. −45◦) from the
horizontal. Assuming that the bubble deforms as an ellipsoid without volume change,
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Figure 4. The force balance on the bubble.

we quantify its deformation ε by expressing the ratio ζ between the length of the
major axis and that of the minor axis as ζ = (1 + ε)/(1− ε). Using this definition we
find ε ≈ 0.017 in case (a) and ε ≈ 0.006 in case (b). These values clearly indicate that
the deformation increases as the bubble rises closer to the wall.

3. The wall-induced forces acting on a spherical bubble
3.1. Estimates of the drag and lift forces

The motion of a single bubble moving at finite Reynolds number is generally de-
termined by writing a force balance involving various hydrodynamic effects assumed
to act independently of each other. In an unbounded fluid these effects are usually
separated into contributions corresponding to buoyancy, quasi-steady drag, history,
pressure gradient, added mass and shear-induced lift, respectively (Magnaudet &
Eames 2000). Since in the present experiment the fluid is at rest when the bubble is
absent, forces due to pressure gradient and shear in the undisturbed flow are zero. In
contrast, the added-mass force due to bubble acceleration and the history force may
be significant when the bubble rises near the leading edge of the plate. To estimate
the lowest location at which they can be neglected in the force balance, we performed
some separate experiments in which we determined the time required by the bubble
to reach a quasi-steady rise velocity when starting from rest in an unbounded fluid.
In the range of Reynolds number corresponding to our experimental conditions, we
found that this time is always less than Ts = 0.1 s. (Ts would be larger, especially at
low Reynolds number, in the case of a rigid sphere because changing the shear-free
boundary condition into a no-slip condition increases history effects (see Magnaudet
& Eames 2000).) Near the leading edge of the plate, transient effects are less severe
than in the former situation because the rise velocity changes only by 20% or less,
compared to its value in unbounded fluid. Consequently we consider that the time
period during which transient effects are important near the leading edge is at most Ts
and we simply exclude from our data the first three frames corresponding to vertical
distances from the leading edge less than Ls = U∞Ts.

Figure 4 shows a sketch of the force balance on the bubble as it rises steadily near
the wall along a slightly inclined path; the drag, lift and buoyancy forces balance
each other. Provided the inclination angle α is small, the wall-induced lift force almost
balances the horizontal (z) component of the drag force. Therefore, if the drag law
is known, this component of the drag can be determined from the experimental
value of the transverse component W of the bubble velocity, yielding indirectly the
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strength of the wall-induced lift force. Using the method of matched asymptotic
expansions, Vasseur & Cox (1977) determined the drag and lift forces acting on a
solid sphere migrating at low Reynolds number near a plane wall under conditions
R/L � Re � 1. In the Appendix we show how their technique can be adapted
to the case of a spherical inviscid bubble for which the no-slip condition at the
surface is replaced by a shear-free condition. The resulting expression for the drag
and lift components of the force depends on two dimensionless quantities, namely
the Reynolds number Re and the dimensionless separation L∗ = LRe/(2R) = LU/ν
which can be interpreted as the ratio of the distance L between the bubble centre and
the wall to the viscous length scale ν/U. With this definition, it becomes clear that
values of L∗ larger (resp. smaller) than 1 correspond to situations where the wall lies
in the Oseen (resp. Stokes) region of the disturbance produced by the bubble. From
(A9) of the Appendix, we conclude that in the regime where Re and L∗ are both
small, the two components of the force balance on the bubble are

4πµRU

(
1 +

Re

8
+

3

8

R

L

)
=

4

3
πR3ρg, 4πµRW

(
1 +

3

4

R

L

)
=
Re

8
πµRU, (1a, b)

where ρ and g denote the liquid density and gravity, respectively. (Strictly speaking,
ρ is the density difference between the two fluids but the density of air is negligibly
small in the present context.) Equations (1) simply state that the drag force in the
vertical direction balances the net buoyancy force, whereas the drag force in the
lateral direction balances the lift force produced by the combination of inertia effects
and asymmetry of the wall-induced flow. Since the buoyancy force does not depend
on the distance to the wall, the left-hand side of the first of (1a) is constant. Thereby
we can write a relation between the local Reynolds number Re of the bubble rising at
a distance L from the wall and the Reynolds number Re∞ of the same bubble rising
in an unbounded fluid:

Re

(
1 +

Re

8
+

3

8

R

L

)
= Re∞

(
1 +

Re∞
8

)
. (2)

For arbitrary values of L∗, the dimensionless wall-induced forces are given by com-
plicated integrals. Consequently we generalize (1) and (2) to the form

F∞Dx(Re) + 2πµRUReIDx(L
∗) = F∞Dx(Re∞), (3a)

F∞Dz(Re) + 2πµRWReIDz(L
∗) = 2πµRUReIL(L∗), (3b)

where IDx, IDz , and IL are the normalized wall-induced forces given by (A5)–(A7), and
F∞Dx(Re) and F∞Dz(Re) are the algebraic values of the x- and z-components of the drag
that the bubble would experience in an unbounded fluid if rising with the same angle
α and the same Reynolds number Re. Figures 5 and 6 display the evolution of L∗IDx,
L∗IDz and IL as a function of L∗. Both figures show that all three quantities decrease
as L∗ increases and have a maximum gradient around L∗ = 1. They also suggest that
wall effects become insignificant for L∗ > 10.

Equations (1) and (3) show that in the low-Re limit, forces acting on the bubble
can be expressed as the sum of the drag force in unbounded fluid plus wall-induced
forces proportional to Re. When Re becomes O(1), there is obviously no rigorous
proof that such a sum gives the correct total force. Nevertheless it is still possible to
define the wall-induced correction as the difference between the actual value of the
force and its value at the same Reynolds number in an unbounded fluid. Therefore,
to estimate F∞Dx(Re) and F∞Dz(Re) at a finite Reynolds number, we use the correlation
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Figure 5. The wall-induced corrections to the drag force in the regime Re∞ � 1, L∗ � 1.
Solid line: L∗IDx (equation (A 5)); dashed line: L∗IDz (equation (A 7)).
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Figure 6. The wall-induced lift force IL in the regime Re∞ � 1, L∗ � 1 (equation (A 6)).

proposed by Mei, Klausner & Lawrence (1994), namely

F∞Di(Re)
4πµRUi

= f(Re) = 1 +

{
8

Re
+

1

2
(1 + 3.315Re−1/2)

}−1

, (4)

where the index i stands for either of the directions x and z, and Ui stands for
the corresponding velocity component (U or W ). Note that strictly speaking the
Reynolds number involved in (4) is Re = 2R(U2 + W 2)1/2/ν; however U is always
positive and W/U is always much smaller than unity in our experiments, so that
the latter definition of Re almost coincides with our initial definition Re = 2RU/ν.
The correlation (4) agrees with the asymptotic solution found by Taylor & Acrivos
(1964) in the low-Re regime and with the boundary-layer solution obtained by Moore
(1963) in the high-Re regime. Experiments performed in organic liquids and numerical
studies have shown that (4) is also a sound approximation of the drag at intermediate
Reynolds numbers (Magnaudet & Eames 2000). We evaluated the velocity U∞ of
bubbles rising far from the plate by equating the drag force (4) with the buoyancy



Drag and lift forces on a bubble near a vertical wall 287

force acting on the bubble. Comparing this estimate with the optical determination of
U∞ revealed a very good agreement. This allows us to conclude that bubbles remain
clean in our experiments, i.e. no effect of contamination by surface-active impurities
is discernible. Using (4), relation (2) may be generalized as

Re(f(Re) + 1
2
ReIDx(L

∗, Re)) = Re∞f(Re∞). (5)

Note that IDx is now a priori a function of both L∗ and Re, since there is no reason
to believe that the analytical expression established in the Appendix still holds for
O(1) Reynolds numbers. Once L, R, U and U∞ have been measured, we determine
Re∞ and Re and use (5) to evaluate the wall-induced correction to the drag force in
the form

L∗IDx(L∗, Re) =
L

R

(
Re∞
Re

f(Re∞)− f(Re)

)
. (6)

In the transverse direction, (3) and (4) imply

IL(L∗, Re) =
2α

Re

[
f(Re) +

R

L
L∗IDz(L∗, Re)

]
= α

[
2

Re
f(Re) + IDz(L

∗, Re)
]
. (7)

Following a previous remark, we approximate the Reynolds number Re in (6) and (7)
as Re = 2RU/ν because the angle α is always small. Moreover, to use (7) we need the
further assumption that the correction IDz to the lateral drag force can be estimated
using the analytical result (A7) whatever the Reynolds number. This assumption is
reasonable because figure 5 shows that for a given L/R the wall-induced correction
L∗IDz(L∗, Re) becomes small when Re becomes larger than unity. Hence, even though
the analytical estimate (A7) may not be accurate for such Reynolds numbers, the
corresponding error should not have a significant influence on the value of the lift
force. Moreover, results to be discussed in the next section suggest that predictions
for the wall-induced drag derived in the limit of vanishingly small Reynolds number
remain fairly accurate at least up to Re = O(1).

The uncertainties affecting the various quantities determined in our experiments
can be quantified as follows. The uncertainty on R is 1 pixel, i.e. about 6.4 µm, whereas
that on L is about 30 µm because the wall is somewhat out of focus. The uncertainty
in the relative speed of the bubble and the camera is about 0.4 mm s−1, i.e. the error
in the determination of U is about 4% when the bubble rises at 10 mm s−1. In (5) the
largest uncetainty comes from the angle α (i.e. from the transverse velocity W ); the
corresponding error is estimated to range from 10% to 25%. Using these estimates,
we determined the uncertainties in quantities such as U/U∞, L/R, IDx and IL by using
standard techniques (Benedict, Abernethy & Osolsobe 1985).

3.2. The wall-induced drag force

Figure 7(a) shows the values of L∗IDx deduced from (4) for various values of Re∞
ranging from 0.11 to 32.0. Experimental values corresponding to Re∞ = 0.62 and
1.3 are in good agreement with the analytical solution derived in the Appendix. The
agreement between the asymptotic solution and the experimental values corresponding
to Re∞ = 1.3 is noticeably good. It suggests that, although this Reynolds number is
outside the strict range of validity of Oseen-type solutions, the O(Re) terms taken
into account in the asymptotic solution (A 5) still provide the dominant wall-induced
contribution. In contrast, experimental values corresponding to Re∞ = 5.9 and 32.0
clearly show that the low-Re solution underestimates the wall effect in this regime. In
practice, the consequences of this underestimate are not very serious because figure 5
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Figure 7. (a) The wall-induced drag correction L∗IDx1 vs. L∗. •, Re∞ = 0.11; �, Re∞ = 0.25;
N, Re∞ = 0.62; e, Re∞ = 1.3; �, Re∞ = 5.9; 4, Re∞ = 32.0; ——, numerical integration of (A 5).
(b) The wall-induced drag correction L∗IDx vs. L/R for L∗ < 1. •, Re∞ = 0.11; �, Re∞ = 0.25;
——, equation (8); - - - -, numerical integration of (A 5) for Re∞ = 0.11; — - —, numerical
integration of (A 5) for Re∞ = 0.25.

indicates that the relative contribution of the correction L∗IDx to (3) is weak when
L∗ > 8.

Results corresponding to the lowest two values of Re∞ (0.11 and 0.25) reveal that
wall effects become larger than predicted by the foregoing analytical solution when
the bubble rises very close to the wall. This was to be expected since the condition
L∗ � 1 under which the solution (A 5) was derived is clearly not satisfied in this
regime. Another asymptotic solution valid in the opposite limit L∗ � 1 was recently
obtained by Magnaudet, Takagi & Legendre (2002). The corresponding result for the
drag correction is, in the present notation,

L∗IDx =
3

8
+

9

64

R

L
+

27

512

(
R

L

)2

. (8)

Figure 7(b) shows how the two series of data corresponding to Re∞ = 0.11 and 0.25
compare with (8). Given the experimental uncertainty, the series for Re∞ = 0.11 is
found to agree closely with the analytical prediction over the whole range of L/R.
This agreement shows that at such distances from the wall, the contribution of higher-
order corrections to R/L taken into account in (8) is significant. By comparison with
(A 8), this shows that the flow field is not satisfactorily represented by considering the
bubble simply as a point force, as in the theories of Vasseur & Cox (1976, 1977) or in
the solution derived in the Appendix. The behaviour of the series corresponding to
Re∞ = 0.25 is particularly interesting. Data obtained for the smallest values of L∗ or
L/R agree well with (8), while those corresponding to the largest separations agree
with (A 5). The transition between the two asymptotic evolutions is smooth and takes
place in the range L∗ ≈ 0.3–0.4.

At this point a crude evaluation of the possible influence of the outer wall of
the device on the results is in order. The drag force acting on a bubble rising in
a quiescent liquid between two parallel walls separated by a gap H was obtained
by Shapira & Haber (1988). Their results, valid under the assumptions L∗ � 1 and
H∗ = HU/ν � 1, indicate that the relative contribution of the most distant wall to
the wall-induced drag force is about 2.5% for L/H = 0.125. In our experiments H
is 25 mm and the distance L is always less than 3 mm, implying that L/H is smaller
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Figure 8. The relative rise velocity U/U∞ vs. L/R. •, Re∞ = 0.11; N, Re∞ = 0.62. Curves: numerical
integration of (3) with L∗IDx given by: ——, (8) for Re∞ = 0.11; - - - -, (A 5) for Re∞ = 0.11;
— - —, (A 5) for Re∞ = 0.62.

than 0.12. Then, using (8) and keeping in mind that data obtained in the regime
L∗ � 1 correspond to values of L/R less than 4, we conclude that the influence of
the outer wall is very weak, being everywhere smaller than the first two terms on the
right-hand side of (8).

Wall effects in the streamwise direction can also be evaluated by plotting the
experimental values of the ratio U/U∞ as a function of L/R. Given Re∞, an analytical
estimate of this ratio may also be obtained by solving (3) for Re, assuming that the
wall-induced correction can be obtained from (A 5) whatever Re∞. Figure 8 shows how
this velocity ratio behaves for Re∞ = 0.11 and 0.62. In the former case the rise velocity
decreases severely as the distance to the wall decreases and the local rise velocity U
is only 78% of U∞ for L/R ≈ 1.8. In line with the discussion of figure 7(b), this
decrease of U is predicted well by (8), while it is underestimated by (A 5). Similarly,
as could be expected from figure 7(a, b), the rise velocity of bubbles corresponding to
Re∞ = 0.62 is accurately predicted by (A 5) for large enough separations (L/R > 3.5,
say) and is slightly overestimated by this expression for smaller separations.

Figure 9 shows the profiles of U/U∞ corresponding to Re∞ = 5.9 and 32.0. The
difference between U and U∞ is less than 3% everywhere. This trend confirms that,
given L/R, the influence of the wall on the streamwise velocity becomes negligible
when the Reynolds number is O(10) or more. Hence, even though the analytical
estimate of IDx is clearly in error for such Reynolds numbers (see the solid line in
figure 9), this has little effect on the prediction of U. To summarize, figures 8 and
9 indicate that (3) combined with the analytical estimate (A 5) allows us to obtain
a reasonable estimate of the reduction in the streamwise velocity of a bubble near
the wall for L∗ > 0.35. For smaller L∗, good predictions are obtained by using (8) in
place of (A 5).

3.3. The wall-induced lift force on a spherical bubble

Figure 10 shows the reduced lift force IL as a function of L∗ for Re∞ = 0.6, 0.8, 2.1
and 4.4. It appears that IL is a monotonically decreasing function of L∗ in this range
of Re∞, i.e. a decreasing function of L/R for a given Re∞. Similarly, if the results
corresponding to a given L/R were plotted as a function of Re, it would become
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Figure 9. The relative rise velocity U/U∞ vs. L/R. �, Re∞ = 5.9; 4, Re∞ = 32.0. Numerical
integration of (3) with L∗IDx given by (A 5): ——, Re∞ = 5.9; - - - -, Re∞ = 32.0.
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Figure 10. The wall-induced lift force IL vs. L∗ for L∗ > 1. •, Re∞ = 0.6; �, Re∞ = 0.8;
N, Re∞ = 2.1; �, Re∞ = 4.4; ——, numerical integration of (A 6).

apparent that IL is a monotonically decreasing function of the Reynolds number.
Results shown in figure 10 indicate that, up to L∗ ≈ 3, experimental values agree
well with the analytical solution (A 6), even when the bubble Reynolds number is
O(1) (for L∗ = 2 and Re∞ = 0.8, the difference between the analytical prediction
and the experimental value is about 12%). Again this suggests that, even though the
asymptotic solution derived in the Appendix has been formally obtained under the
assumption Re � 1, it is valid up to Re = O(1) and L∗ = O(1). For larger values
of L∗ and Re∞, figure 10 shows that the analytical solution underpredicts the lift
force, as we have already observed for the drag correction in figure 7(a). This trend
is confirmed by figure 11 in which we have plotted IL for values of Re∞ ranging
from 5.5 to 32.0. For these values of Re∞, L∗ ranges from 10 to 60 approximately.
The figure shows that experimental values are typically twice as large as analytical
predictions in this range of Re∞ and L∗. Combining the results of figures 10 and 11,
we conclude that for Re∞ = O(1) or more, (A 6) underpredicts the migration velocity
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Figure 11. The wall-induced lift force IL vs. L∗ for L∗ > 1. •, Re∞ = 5.5; �, Re∞ = 7.3;
N, Re∞ = 15.0; �, Re∞ = 32.0; ——, numerical integration of (A 6).
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Figure 12. The wall-induced lift force IL vs. L∗ for L∗ < 1 and L∗ > 1. �, Re∞ = 0.25 in K10;•, Re∞ = 0.25 in K20; N, Re∞ = 0.25 in K50; �, Re∞ = 0.25 in K100; e, Re∞ = 1.25 in K20;
�, Re∞ = 1.25 in K50; ——, numerical integration of (A 6).

by a factor of two for L∗ > 4. This underprediction certainly has minor consequences
for large values of L∗, since the lift force vanishes whatever Re∞ in the limit L∗ → ∞.
In contrast, it may induce severe underpredictions of the migration velocity when L∗
and Re∞ are in the range 2–10. In this regime, full numerical solutions are required
to obtain a uniformly valid expression of IL.

4. The lift force on a slightly deformed bubble in the low-L∗ regime
Figure 12 shows the reduced lift force IL as a function of L∗ for Re∞ = 0.25

and 1.25. When the bubble is spherical, the lift force is a function of Re and L∗
only, as we saw before. In contrast, if departures from sphericity are significant,
the capillary number Ca = µU/σ (µ being the dynamic viscosity and σ the surface
tension) becomes a crucial parameter for the determination of the lateral migration
(see Leal 1980). This is why for each of the above two Reynolds numbers we carried
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out different sets of experiments by using oils with different viscosities. Figure 12
shows that, given Re∞ and L∗, the values of IL do not depend on the liquid viscosity
when L∗ is larger than unity and agree well with the asymptotic solution (A 6). This is
a clear indication that, in the present range of viscosities, bubbles are almost spherical
for L∗ > 1. In contrast, two new features appear in the range L∗ < 1.

First, the two series of experiments performed with the two least-viscous oils show
a monotonic increase of IL when L∗ is decreased, whereas the analytical solution
predicts an almost constant value for L∗ < 0.5. Since the two series of values are al-
most identical in spite of the different viscosities, we conclude that the corresponding
bubbles are almost spherical. Consequently these results suggest that the inertial mi-
gration increases more than predicted by (A 6) as the wall is approached. In the other
two series performed in K50 and K100, the influence of the viscosity is manifested in a
spectacular way and the lift force is much larger than predicted by (A 6). This suggests
that the corresponding bubbles are deformed by the shear produced by the non-slip
condition at the wall. Although this deformation remains small in our experiments
(see figure 3), figure 12 indicates that it cannot be neglected in the prediction of the
transverse force acting on the bubble in the low-L∗ limit. This contrasts with the above
discussion on the wall-induced drag correction, for which we found that the spherical
approximation is suitable over the whole range of Re∞ and L∗. The reason for this
difference can be easily understood by examining the typical magnitude of the ratio
IL/IDx for a spherical bubble. According to (A 8), IL/IDx = L∗/6 in the limit Re→ 0,
L∗ → 0. Hence the transverse force induced by finite inertia effects is typically one to
two orders of magnitude smaller than the correction experienced by the drag when
10−1 < L∗ < 1, which makes IL much more sensitive to small deformations than IDx.

Motivated by the present experimental results, the deformation and lateral migra-
tion of bubbles and drops moving parallel to a wall in a quiescent liquid were recently
analysed theoretically by Magnaudet et al. (2002) by combining the domain pertur-
bation technique (Leal 1992, p. 223) with the method of reflections. This analysis was
carried out for the case where the wall lies in the Stokes region of the flow disturb-
ance, i.e. L∗ � 1; it assumes Ca � 1, Re � 1, with Re/Ca = O(1), so that effects of
deformation and small inertia are taken into account in a consistent manner. At first
order in Ca, the leading-order deformation makes the bubble ellipsoidal with a major
axis directed along the first diagonal in the (x, z)-plane. Defining the length of the
major/minor axis as (1 ± β)R, Magnaudet et al. (2002) found that the deformation
experienced by a bubble of negligible viscosity is

β =
3
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It is worth noting that this result is qualitatively identical to that obtained by Taylor
(1934) in a simple unbounded shear flow. In other words, the bubble would adopt
the same shape and orientation if it were maintained at rest in the simple shear flow
U = (β/Ca)U(z/R)ex.

We can obtain an estimate of the influence of the outer wall of the device on
the deformation by comparing terms on the right-hand side of (9) with the effect of
the second wall predicted by Shapira & Haber (1988). Their theory shows that the
relative contribution of the most distant wall to the deformation is about 2.5% for
L/H = 0.125. Then, using arguments similar to those developed in § 3.2, we conclude
that the corresponding contribution is smaller than the first three terms within curly
brackets in (9) for all locations at which we were able to measure the deformation.
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R U
No. Oil (mm) (mm s−1) L/R Re Ca ε

1 K100 0.564 8.16 1.56 0.092 0.037 0.0080
2 K100 0.564 8.43 2.04 0.096 0.039 0.0045
3 K100 0.647 10.46 1.57 0.136 0.048 0.0120
4 K100 0.647 11.31 2.35 0.147 0.052 0.0038
5 K100 0.752 13.43 1.48 0.203 0.062 0.0172
6 K100 0.752 15.00 2.53 0.227 0.069 0.0056
7 K100 0.752 15.37 2.92 0.232 0.070 0.0035
8 K100 0.814 16.30 1.46 0.267 0.075 0.0226
9 K100 0.814 16.88 1.79 0.276 0.077 0.0138

10 K100 0.814 17.52 2.08 0.287 0.080 0.0103
11 K100 0.814 17.84 2.32 0.292 0.082 0.0079
12 K100 0.814 18.17 2.52 0.297 0.083 0.0063
13 K100 0.814 18.86 2.98 0.309 0.086 0.0036
14 K100 0.904 19.00 1.45 0.345 0.087 0.0233
15 K100 0.904 19.96 1.62 0.363 0.091 0.0198
16 K100 0.904 20.66 1.93 0.375 0.095 0.0132
17 K100 0.904 20.73 2.01 0.377 0.095 0.0120
18 K100 0.904 21.74 2.60 0.395 0.100 0.0077
19 K100 0.904 22.27 3.00 0.405 0.102 0.0043
20 K50 0.615 20.01 1.52 0.525 0.042 0.0108
21 K50 0.615 21.40 2.04 0.562 0.046 0.0049

Table 2. Experimental data used in figure 14.
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Figure 13. The local radius R(θ) of bubbles shown in figure 3 vs. the meridian angle θ.
——, figure 3(a); - - - -, figure 3(b).

Experimentally, we determined bubble deformation by using the pictures recorded
for 0.092 < Re∞ < 0.59. The corresponding experimental data are reported in
table 2. As indicated in § 2, a direct estimate of the deformation was obtained
by determining the lengths LM and Lm of the major and minor axes of the bubble.
Setting LM = (1 + ε)R and Lm = (1 − ε)R and assuming that ε is small, we approxi-
mated ε through the relation 2ε = LM/Lm − 1. We also performed a more complete
determination by expanding the projection of the bubble contour in Fourier modes
(figure 13). This second technique allowed us to identify higher-order deformation
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Figure 14. The normalised deformation ε/Ca vs. the relative separation L/R: •, experimental
values corresponding to data of table 2; ——, β/Ca from (9).

modes and to conclude that both determinations provide very similar amplitudes for
the dominant mode. Figure 14 shows how ε/Ca evolves with the separation L/R and
how it compares with the theoretical prediction β/Ca for the dominant mode. The
deformation increases monotonically as the separation decreases, being about seven
times larger for L/R = 1.5 than for L/R = 3. This confirms that the wall is entirely
responsible for the observed shape. The measured deformation closely follows the
prediction of (9) over the whole range of separations for which we were able to detect
a significant departure from sphericity. However, there is a slight underprediction for
the smallest separations reached in the experiments. This trend would probably be-
come more pronounced in the limit L/R → 1 because of the influence of higher-order
terms neglected in (9).

Using the definition of the reduced lift force IL given by (3) and introducing
the Ohnesorge number Oh = Re/Ca = 2ρRσ/µ2, the theoretical result obtained by
Magnaudet et al. (2002) for the lateral migration may be expressed in the form
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with C1 ≈ 0.125, C2 ≈ −0.516, C3 ≈ −0.034. In the same regime, the drag correction
in the direction perpendicular to the wall was found to be
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The leading-order term on the right-hand side of (10) is the counterpart of the
result derived by Cox & Hsu (1977) for a solid sphere under the assumptions
Re∞ � R/L� 1. Note that this term, as well as the leading-order term on the right-
hand side of (11), may be obtained through (A 6) and (A 7) by considering the limit
L∗ → 0. Terms associated with constants C1, C2 and C3 in (10) represent near-wall
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Figure 15. (a) The wall-induced lift force IL vs. L/R for Re∞ = 0.25 and L∗ < 1. �, K10 (Oh ≈ 66);•, K20 (Oh ≈ 27);4, K50 (Oh ≈ 8.7);�, K100 (Oh ≈ 3.4). Prediction from (10): - - - -, Re∞ = 0.25,
Oh = 6.6; — - —, Re∞ = 0.25, Oh = 27; — · · ·—, Re∞ = 0.25, Oh = 8.7; · · ·, Re∞ = 0.25, Oh = 3.4;
—–, prediction from (A 6). (b) The wall-induced lift force IL vs. L/R for L∗ < 1. •; Re∞ = 0.11 in
K100; �; Re∞ = 0.47 in K100. Prediction from (10): —–, Re∞ = 0.11, Oh = 2.6; — - —, Re∞ = 0.47,
Oh = 4.1. Prediction from (A 6): - - - -, Re∞ = 0.11; — - - - —, Re∞ = 0.47.

corrections of the inertial contribution to the lift force. These corrections arise from
higher-order interactions between the flow around the bubble and the wall which
become important as the separation L becomes comparable to the radius R. Thus,
while (A 6) suggests that the lift force tends to a constant value in the limit of small
separations, (10) shows that there is a slight increase of IL followed by a significant
drop as the wall is approached. The last group of terms on the right-hand side of
(10) represents the contribution of the deformation to the lift force. Note that this
contribution is proportional to (R/L)2, so that it becomes negligible for dimensionless
separations of several units.

Here the possible influence of the outer wall of the device may be estimated by
comparing (10) with the prediction of Vasseur & Cox (1976) concerning the inertial
migration of a solid sphere moving in a quiescent fluid bounded by two parallel walls
separated by a gap H . Their result indicates that the most distant wall reduces the
transverse force by about 2% for L/H = 0.12. Hence we conclude that in the range
of L/R of interest here, the influence of the second wall is again very weak, being
smaller than the first three terms on the right-hand side of (10).

The experimental determination of IL in the low-L∗ regime is achieved by sub-
stituting the measured value of the transverse velocity W and the drag correction
(11) corresponding to the local value of L in (3b). Figure 15(a) shows how the four
series of data corresponding to Re∞ = 0.25 in figure 12 (L∗ < 1) compare with (10).
Overall, the data and the theoretical prediction follow the same evolution, but the
theory underpredicts systematically the lift force as L/R decreases, the underpredic-
tion reaching 30% to 40% for L/R = 2. Figure 15(b) shows two other typical series
of data obtained in the situation L∗ < 1 which display the same behaviour. The
origin of the discrepancy is unclear: the contribution due to deformation in (10) has
been derived independently by two different techniques and we checked that if the
viscosity of the fluid filling the bubble is made very large, the higher-order corrections
to the inertial contribution agree with known results for a rigid sphere (Cherukat &
McLaughlin 1994). We are currently investigating this disagreement.

An interesting indication in figures 15(a) and 15(b) concerns the lowest L∗ for which
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the description provided by (A 6) applies. Obviously this limit generally depends on
the Ohnesorge number. For instance, data corresponding to oils K10, K20 and K50 in
figure 15(a) agree with (A 6) for L∗ > 0.4 whereas the data set Re∞ = 0.47, Oh = 4.55
in figure 15(b) shows such an agreement only for L∗ > 0.9. Consequently, we can
conclude that the lowest limit of validity of (A 6) in cases where deformation plays a
negligible role in the generation of the lateral force is about L∗ = 0.4.

5. Summary and concluding remarks
We have described new experimental results concerning the influence of a vertical

wall on the evolution of a spherical or spheroidal rising bubble. We have been able
to obtain accurate determinations of the drag and lift components of the force as
well as of the shape of the bubble by using a travelling optical device combining a
CCD camera and a microscope. Another important aspect of the present experiments
is the nature of the carrying fluid. Using silicone oils has allowed us to ensure that
the bubble surface behaves as a mobile interface; varying the viscosity has made it
possible to vary the capillary number for a given rise Reynolds number. We have
varied the rise Reynolds number Re∞ between 0.09 and 32, i.e. we have considered
situations in which the flow field around the bubble is dominated by viscous effects
as well as cases where inertial effects are dominant.

Qualitatively, the influence of the wall does not change with the Reynolds number
in the range covered by the present experiments; the wall is always found to reduce
the rise velocity and to produce a repulsive lift force resulting in a migration of the
bubble away from it. Moreover, all wall effects increase as the separation L decreases.
Nevertheless, experimental results show that, given the relative separation L/R, the
strength of these effects strongly decreases as the Reynolds number increases, and
becomes insignificant when Re = O(10) or more. This tendency may be explained by
the following argument (Legendre & Magnaudet 1998). At low Reynolds number, the
vorticity produced by the shear-free condition at the surface of the bubble spreads out
and interacts strongly with the wall. In contrast, when inertia effects are dominant,
the vorticity is essentially confined in the boundary layer and the wake of the bubble.
Interactions between the boundary layer of thickness δV and the wall are certainly
weak when (L − R)/δV is O(10) or more. Similarly, interactions between the near
wake and the wall are necessarily weak because the wake is almost parallel to the
wall in the situation considered here, so that the no-slip condition applies in a region
of the flow where the velocity defect behind the bubble is almost zero. Consequently,
we believe that the distribution of the vorticity around the bubble is responsible for
the weak interactions observed for Reynolds numbers of O(10). Moreover, it must be
kept in mind that for high enough Reynolds numbers the dominant interaction with
the wall results in an attractive lift force. This force, which is an added-mass effect
(Milne-Thomson 1968, p. 563), is due to the fact that in potential flow the asymmetry
in the velocity distribution around the bubble induces a pressure gradient directed
away from the wall. This regime has not been considered here.

Given the weakness of the interactions for Re∞ > 1, most of the analysis has
focused on the low-Reynolds-number regime. Following the analyses of Vasseur &
Cox (1976, 1977), we found convenient to define two different subregimes, according
to the value of the dimensionless separation L∗. Situations with L∗ larger than unity
correspond to the case where the wall lies in the Oseen region of the flow disturbance.
For such situations we have adapted the calculation of Vasseur & Cox (1977) to
the case of a shear-free interface in order to determine analytically the wall-induced
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drag and lift forces on the bubble. Experimental results obtained in this regime have
revealed a good agreement with this theory for Reynolds numbers up to unity and
values of L∗ larger than 0.4.

Situations in which L∗ is smaller than unity, i.e. the wall lies in the Stokes region of
the flow disturbance, display a more complex behaviour because when the viscosity
of the carrying liquid is large enough, the shear resulting from the relative velocity
between the bubble and the wall is able to deform the bubble significantly, thus
producing an additional contribution to the lift force. Experimental determinations
of the deformation and drag force have been found to compare well with the analytical
predictions. In contrast, the measured lift force has been found to increase more than
predicted by the theory as the wall is approached.

To complete the description provided by the present investigation and to obtain
a clearer view of the mechanisms underlying the various transitions observed here,
numerical simulations would be worthwhile. They could also be of great help in
obtaining practical expressions for the drag and lift forces for Reynolds numbers
between 1 and 10, where experiments have shown that analytical predictions derived
under the assumption of low Reynolds number severely underpredict wall-induced
effects.

Appendix. Extension of Vasseur & Cox’s (1977) result to a clean spherical
bubble

Using matched asymptotic expansions, Vasseur & Cox (1977) determined wall
effects acting on a solid sphere of radius R moving at a distance L from a plane
wall with a velocity U parallel to it. Their analysis is valid provided the condition
R/L � UR/ν � 1 is satisfied. The first inequality is equivalent to L∗ = LU/ν � 1
and indicates that the wall lies in the Oseen region of the flow where viscous and
advective effects have a comparable magnitude. In this appendix we extend the result
of Vasseur & Cox to the case of a clean spherical bubble. For this purpose we start
from the system of equations governing the disturbance flow in the Oseen region. At
such distances the first-order effect of the bubble on the flow field can be represented
by a point force (Saffman 1965). Then, normalizing distances by ν/U, velocities and
pressures by RU2/ν and ρRU3/ν respectively, we obtain the governing equations for
the velocity disturbance u and the pressure disturbance p in the form

∇ · u = 0,

∇2u− ∇p− ∂u

∂x
= −4π(ex + αez)δ(r),

u→ 0 as r →∞,
u = 0 for z = −L∗,


(A 1)

where δ(r) is the three-dimensional Dirac distribution, and the strength of the
Stokeslet has been chosen to agree with the Hadamard–Rybczynski expression for
the drag force on a bubble in the creeping flow regime (Clift et al. 1978, p. 33). In
(A 1) the angle α between the bubble path and the vertical (x) direction (see figure 4)
is assumed to be small, so that the inertia term is neglected in the z-direction. This
approximation is based on our experimental results where we observed that α was
always less than 0.02, corresponding to a maximum transverse Reynolds number of
about 0.1.
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As usual in this type of problem we define the two-dimensional Fourier transforms

Γi(kx, ky, z) =
1

4π2

∫ ∞
−∞

∫ ∞
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Fourier-transforming (A 1) then yields{
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x − k2
y − ikx +

∂2

∂z2

} Γx
Γy
Γz

−
 ikx

iky
∂/∂z

Π = −δ(z)

π

 1
0
α

 ,

i(kxΓx + kyΓy) + ∂Γz/∂z = 0.

 (A 2)

Solving (A 2) in the same way as Vasseur & Cox (1977) and taking into account
the no-slip condition on the wall, we obtain the Fourier transform of the longitudinal
and transverse velocity components at r = 0 in the form

Γx(0) = Γ∞x (0)− 1

2π

[
ikx(t+ q)

q(t− q)
e−2qL∗ +

{
2ikxt

(t− q)q
+

ikx − 1

t

}
e−2tL∗

− 4ikxt

(t− q)q
e−(t+q)L∗

]
− α

2π

(t+ q)

(t− q)
(e−qL

∗ − e−tL
∗
)2, (A 3a)

Γz(0) = Γ∞z (0) +
(t+ q)

2π(t− q)
(e−qL

∗ − e−tL
∗
)2,

− αq2

2πikx(t− q)

{
t+ q

q
e−2qL∗ − 4e−(q+t)L∗ +

t+ q

t
e−2tL∗

}
, (A 3b)

where q2 = k2
x + k2

y , t
2 = q2 + ikx, and Γ∞x (0) and Γ∞z (0) denoting the corresponding

Oseen solution in unbounded flow. The second term in the right-hand side of (A 3a)
(resp. (A 3b)) is the drag (resp. lift) component of the wall-induced correction due
to the wall-parallel velocity U. Similarly the third term in the right-hand sides
of (A 3a, b) is due to the wall-normal velocity W . Consequently this term can be
interpreted as a lift (resp. drag) correction in (A 3a) (resp. (A 3b)). In (A 3a) this term
is clearly negligible compared to the second one whereas both contributions may have
a similar magnitude in (A 3b). We now define

kx =
λ cosφ

L∗
, ky =

λ sinφ

L∗
, λ = L∗q, χ(λ, φ) = L∗t. (A 4)

Taking the inverse Fourier transform of the second term in the right-hand side of
(A 3a) and using the above definitions, we obtain the wall-induced velocity correction
in the x-direction as

IDx = − 1

2πL∗2

∫ ∞
0

∫ 2π

0

{(χ+ λ)e−2λ + 2χe−2χ − 4χe−(χ+λ)} iλ cosφ

χ− λ dλ dφ

− 1

2πL∗2

∫ ∞
0

∫ 2π

0

iλ cosφ− L∗
χ

λe−2χ dλ dφ. (A 5)

Similarly, evaluating the inverse Fourier transform of the right-hand side of (A 3b)
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yields the transverse velocities induced by U and W respectively as

IL =
1

2πL∗2

∫ ∞
0

∫ 2π

0

χ+ λ

χ− λ (e−λ − e−χ)2λ dλ dφ, (A 6)

αIDz = − α

2πL∗2

∫ ∞
0

∫ 2π

0

λ2

i cosφ

{(
e−2λ

λ
− e−2χ

χ

)
+

2(e−λ − e−χ)2

(χ− λ)
}

dλ dφ. (A 7)

In the limit Re→ 0 and L∗ → 0, (A 5), (A 6) and (A 7) become

IDx = − 3

8L∗
, IDz = − 3

4L∗
, IL = − 1

16
. (A 8)

These results combined with the Oseen-like expression for the drag force acting on
a bubble in an unbounded fluid (Taylor & Acrivos 1964) can be put in dimensional
form to obtain the components of the hydrodynamic force in the x- and z-directions
as

Fx = −4πµRU

[
1 +

Re

2

(
1

4
− IDx

)]
= −4πµRU

(
1 +

Re

8
+

3

8

R

L

)
,

Fx = −4πµRU

[
α− Re

2
(αIDz + IL)

]
= 4πµR

[
Re

32
U −W

(
1 +

3

4

R

L

)]
.

 (A 9)

It is worth noting that (A 8) and (A 9) can be recovered directly from the results
of Vasseur & Cox (1977) by using the general argument developed by Legendre &
Magnaudet (1998). According to this argument, the leading-order correction to the
force produced by the wall is (2/3)N+1 times that experienced by a solid sphere, N
being the number of times the Stokeslet associated with the bubble is involved in the
process generating the force. In the present case N = 1 because the interaction force
results directly from the far-field flow produced by the bubble. In the limit Re→ 0 and
L∗ → 0, Vasseur & Cox (who assumed that the undisturbed motion was parallel to the
wall, so that W was zero in their work) found (in our notation) that the correction
to Fx was (27/8)πµR2U/L whereas that the lift force was Fz = (9/32)πµReRU.
Multiplying these results by (2/3)2 yields immediately the wall-induced terms of Fx
and Fz in (A 9).

REFERENCES

Ambari, A., Gauthier-Manuel, B. & Guyon, E. 1983 Effect of a plane wall on a sphere moving
parallel to it. J. Phys. Lett. 44, 143–146.

Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.

Benedict, R. P., Abernethy, R. B. & Osolsobe, G. 1985 Measurement uncertainty. ANSI/ASME
Performance Test Code Rep. 19-1.

Bretherton, F. P. 1962 The motion of rigid particles in a shear flow at low Reynolds number.
J. Fluid Mech. 14, 284–304.

Chan, P. C. H. & Leal, L. G. 1979 The motion of a deformable drop in a second-order fluid.
J. Fluid Mech. 92, 131–170.

Chan, P. C. H. & Leal, L. G. 1981 An experimental study of drop migration in shear flow between
concentric cylinders. Intl J. Multiphase Flow 7, 83–99.

Cherukat, P. & McLaughlin, J. B. 1994 The inertial lift on a rigid sphere in a linear shear flow
field near a flat wall. J. Fluid Mech. 263, 1–18.

Clift, R., Grace, J. R. & Weber, M. E. 1978 Bubbles, Drops and Particles. Academic.

Cox, R. G. & Hsu, S. K. 1977 The lateral migration of solid particles in a laminar flow near a
plate. Intl J. Multiphase Flow 3, 201–222.



300 F. Takemura, S. Takagi, J. Magnaudet and Y. Matsumoto

Goldman, A. J., Cox, R. G. & Brenner, H. 1967 Slow viscous motion of a sphere parallel to a
plane wall. Part I. Motion through a quiescent liquid. Chem. Engng Sci. 22, 637–651.

Happel, J. & Brenner, H. 1973 Low Reynolds Number Hydrodynamics. Martinus Nijhoff.

Ho, B. P. & Leal, L. G. 1974 Inertial migration of rigid spheres in two-dimensional unidirectional
flows. J. Fluid Mech. 65, 365–400.

Hogg, A. J. 1994 The inertial migration of non-neutrally buoyant spherical particles in two-
dimensional shear flows. J. Fluid Mech. 272, 285–318.

Karnis, A. & Mason, S. G. 1967 Particle motion in sheared suspensions. Wall migration of fluid
drops. J. Colloid Sci. 24, 164–169.

Leal, L. G. 1980 Particle motions in a viscous fluid. Annu. Rev. Fluid Mech. 12, 435–476.

Leal, L. G. 1992 Laminar Flow and Convective Transport Processes. Butterworth-Heinemann.

Legendre, D. & Magnaudet, J. 1997 A note on the lift force on a spherical bubble or drop in a
low-Reynolds-number shear flow. Phys. Fluids 9, 3572–3574.

Legendre, D. & Magnaudet, J. 1998 Interaction of two spherical bubbles rising side-by-side. Proc.
3rd Intl Conf. Multiphase Flow, Lyon, France.

Magnaudet, J. & Eames, I. 2000 The motion of high-Reynolds-number bubbles in inhomogeneous
flows. Annu. Rev. Fluid Mech. 32, 659–708.

Magnaudet, J., Takagi, S. & Legendre, D. 2002 Drag, deformation and lateral migration of a
buoyant drop moving near a wall. J. Fluid Mech. (submitted).

McLaughlin, J. B. 1991 Inertial migration of a small sphere in linear shear flows. J. Fluid Mech.
224, 261–274.

Mei, R., Klausner, J. F. & Lawrence, C. J. 1994 A note on the history force on a spherical bubble
at finite Reynolds number. Phys. Fluids 6, 418–420.

Milne-Thomson, L. M. 1968 Theoretical Hydrodynamics. Macmillan.

Moore, D. W. 1963 The boundary layer on a spherical gas bubble. J. Fluid Mech. 23, 749–766.

O’Neill, M. E. & Stewarson, K. 1967 On the slow motion of a sphere parallel to a nearby plane
wall. J. Fluid Mech. 27, 706–724.

Saffman, P. G. 1965 The lift force on a small sphere in a slow shear flow. J. Fluid Mech. 22, 385–400.

Shapira, M. & Haber, S. 1988 Low Reynolds number motion of a droplet between two parallel
plates. Intl J. Multiphase Flow 14, 483–506.

Shapira, M. & Haber, S. 1990 Low Reynolds number motion of a droplet in shear flow including
wall effects. Intl J. Multiphase Flow 16, 305–321.

Smart, J. R. & Leighton, D. T. 1991 Measurement of the drift of a droplet due to the presence of
a plane. Phys. Fluids A 3, 21–28.

Stone, H. A. 2000 Philip Saffman and viscous flow theory. J. Fluid Mech. 409, 165–183.

Takemura, F. & Yabe, A. 1998 Gas dissolution process of spherical rising gas bubbles. Chem. Engng
Sci. 53, 2691–2699.

Takemura, F. & Yabe, A. 1999 Rising speed and dissolution rate of a carbon dioxyd bubble in
slightly contaminated water. J. Fluid Mech. 378, 319–334.

Taylor, G. I. 1934 The formation of emulsions in definable fields on flow. Proc. R. Soc. Lond. A
146, 501–523.

Taylor, T. D. & Acrivos, A. 1964 On the deformation and drag of a falling viscous drop at low
Reynolds number. J. Fluid Mech. 18, 466–476.

Uijttewaal, W. S. J. & Nijhof, E. 1995 The motion of a droplet subjected to linear shear flow
including the presence of a plane wall. J. Fluid Mech. 302, 45–63.

Uijttewaal, W. S. J., Nijhof, E. & Heethaar, R. M. 1993 Droplet migration, deformation, and
orientation in the presence of a plane wall: a numerical study compared with analytical
theories. Phys. Fluids A 5, 819–825.

Vasseur, P. & Cox, R. G. 1976 The lateral migration of a spherical particle in two-dimensional
shear flows. J. Fluid Mech. 78, 385–413.

Vasseur, P. & Cox, R. G. 1977 The lateral migration of spherical particles sedimenting in a stagnant
bounded fluid. J. Fluid Mech. 80, 561–591.


